Notes

Fluorination of Calcium Cyanamide: A Convenient Laboratory Scale Synthesis of Carbon Tetrafluoride

Inis C. Tornieporth-Oetting, Matthias Broschag, and **Thomas M. Klap6tke'**

Technische Universität Berlin, Institut für Anorganische und Analytische Chemie, W- 1000 Berlin 12, Germany

Received February 25, 1992

Carbon tetrafluoride is an exceptionally stable gas with a melting point close to that of CH_4 .¹ CF_4 is therefore an excellent inert solvent for both low-temperature reactions and fluorine chemistry (e.g. low-temperature solution Raman and NMR spectroscopy). It can be prepared on a laboratory scale by reacting C (carbon soot),² SiC,¹ or CO² with F_2 at temperatures as high as $400-500$ °C. Industrially it is prepared by the aggressive reaction of F_2 on CF_2Cl_2 or CF_3Cl or by electrolysis of metal fluorides using a C anode.' Whereas the laboratory method using CO (yield 15-85%) requires sophisticated equipment, the fluorination of C leads to product mixtures also containing variable amounts of the higher homologues of fluorocarbons, mostly C_2F_6 and C_3F_8 .² We now report on a simple one-step and high-yield synthesis of pure CF₄ on a laboratory scale.

Graphite-free calcium cyanamide, $CaCN_2$,^{2,3} reacts stoichiometrically with F_2 according to eq 1. The presence of trace

$$
CaCN2 + 3 F2 \longrightarrow \begin{array}{c} [C_8F_1, 25 \text{ °C}, 12 h] \rightarrow C_8F_2 + N_2 + CF_4 \end{array} (1)
$$

amounts of CsF suppresses the formation of NF_3 , which is formed as a side product in the absence of CsF up to 5% .⁴ CF₄ is readily separated from solid CaF_2 , and N_2 can easily be pumped off at -196 °C. The yield of the crude product (which is essentially pure) is quantitative. After purification by fractional condensation, pure CF_4 is obtained in 85-90% yield. Vibrational (IR, Raman), analytical, and mass spectral data for CF₄ are, without any reservation, nicely in agreement with those reported in the literature.^{2,5,6} The use of commercially available $CaCN₂ (Alfa)$ cannot be recommended as the black material contains up to 10% C from **theindustrialdiazotizationprocess** (seebelow, *'Caution").* This leads to unstoichiometric fluorination reactions and therefore impure CF4.

Experimental Section

Cuution! Fluorine and chlorine trifluoride are powerful oxidizers, are toxic, and can react violently with most organic substances (e.g. graphitefree $CaCN₂$ has to be used, see above). Suitable shielding is required, and protective clothing and face masks should be worn at all times.

A 120-mL steel reaction vessel (SS-316, deactivated with ClF₃ was loaded with 3.0 g (37.5 mmol) carbon-free $CaCN₂^{2,3}$ and 0.3 g (2.0 mmol) of CsF. [N.b. The reaction should be carried out in well-passivated metal equipment only. Although ClF₃ is most convenient, F_2 can be used for deactivation.]) F_2 (115 mmol, 4.4 g) was condensed at -196 °C onto the $CaCN₂$. The reaction mixture was warmed within 1 h to room temperature and held at this temperature for 12 h. After the mixture was cooled to-196 °C (or-183 °C), all volatile components were removed in vacuum and pure CF_4 was isolated after fractional condensation at -160 °C in 89% yield (2.9 g, 33 mmol). IR (gas, 25 °C, 0.14 psi, $\tilde{\nu}$ in cm⁻¹): 2565 m, 2193 s, 1945 m, br, 1540 s, 1283 vvs (ν_3), 631 s (ν_4); cf. ref 6. Raman (647.09 nm, 50 mW, -110 °C, liquid under pressure, $\Delta \nu$ in cm⁻¹, relative intensities in parentheses): 1281 (1), ν_3 ; 908 (10), ν_1 ; 633 (1), ν_4 ; 438 (2) ν_2 ; cf. ref 6. Bp: -130 \pm 3 °C (lit.^{1,2} -128.5 °C). Mp: -185 ± 5 °C (lit.^{1,2} -183.5 °C). MS (EI, 70 eV, 25 °C): $m/e =$ 88 (M+).

Acknowledgment. We are grateful to the Deutsche Forschungsgemeinschaft (Grant KL 636/2-1) and to the Fonds derchemischen Industrie for financial support of this work.

Registry No. CaCN₂, 156-62-7; F₂, 7782-41-4; CF₄, 75-73-0.

⁽¹⁾ Greenwood, N. N.; Earnshaw, A. *Chemistry ofthe Elements,* 1st ed.; Pergamon Press: Oxford, England, 1984, p 322. (2) Brauer, *G. Handbuch der Prhparatiuen Anorganischen Chemie;* 3rd

ed.; Ferdinand Enke: Stuttgart, Germany, 1978.

⁽³⁾ Picard, J. P.; Blais, M. **US.** 3,173,755, 1965; *Chem. Abstr.* **1965,** *62,* 14219.

⁽⁴⁾ As CsF catalyzes the isomerization of FNCNF to give $F_2CN_2^7$ both species are likely to be intermediates in the fluorination pathway of $CaCN₂$. Whereas the first step (formation of FNCNF or F_2CN_2) is a slow reaction, the fluorination of F_2CN_2 to give CF_4 and N_2 is apparently a fast reaction. (N.b. Difluorodiazirine, F_2CN_2 , can be decomposed to difluorocarbene and N_2 either by thermal or by ultraviolet irradiation.⁸) If FNCNF is not converted into F_2CN_2 (by CsF catalysis) the formation of NF_3 as a side product is in agreement with the N-F bonded precursor.

⁽⁵⁾ Clark, R. J. H.; Rippon, D. **M.** J. *Chem. SOC., Chem. Commun.* **1971,** 1295.

⁽⁶⁾ Schrader, B. *Ramanllnjrared Atlas* of *Organic Compounds;* 2nd ed.; VCH Verlagsgesellschaft: Weinheim, Germany 1989; p A 2-50.

⁽⁷⁾ Meyers, M. D.; Frank, **S.** *Inorg. Chem.* **1966,5,** 1455.

⁽⁸⁾ Mitsch, R. A. J. *Heterocycl. Chem.* **1964,** *I,* 59.