Notes

Fluorination of Calcium Cyanamide: A Convenient Laboratory Scale Synthesis of Carbon Tetrafluoride

Inis C. Tornieporth-Oetting, Matthias Broschag, and Thomas M. Klapötke'

Technische Universität Berlin, Institut für Anorganische und Analytische Chemie, W-1000 Berlin 12, Germany

Received February 25, 1992

Carbon tetrafluoride is an exceptionally stable gas with a melting point close to that of CH_4 .¹ CF₄ is therefore an excellent inert solvent for both low-temperature reactions and fluorine chemistry (e.g. low-temperature solution Raman and NMR spectroscopy). It can be prepared on a laboratory scale by reacting C (carbon soot),² SiC,¹ or CO² with F_2 at temperatures as high as 400-500 °C. Industrially it is prepared by the aggressive reaction of F_2 on CF_2Cl_2 or CF_3Cl or by electrolysis of metal fluorides using a C anode.¹ Whereas the laboratory method using CO (yield 15-85%) requires sophisticated equipment, the fluorination of C leads to product mixtures also containing variable amounts of the higher homologues of fluorocarbons, mostly C₂F₆ and $C_3F_{8,2}$ We now report on a simple one-step and high-yield synthesis of pure CF_4 on a laboratory scale.

Graphite-free calcium cyanamide, CaCN₂,^{2,3} reacts stoichiometrically with F_2 according to eq 1. The presence of trace

$$CaCN_2 + 3F_2 \xrightarrow{[C_{s}F], 25 \circ C, 12h} CaF_2 + N_2 + CF_4 \quad (1)$$

amounts of CsF suppresses the formation of NF3, which is formed as a side product in the absence of CsF up to 5%.4 CF₄ is readily separated from solid CaF_2 , and N_2 can easily be pumped off at -196 °C. The yield of the crude product (which is essentially pure) is quantitative. After purification by fractional condensation, pure CF₄ is obtained in 85–90% yield. Vibrational (IR, Raman), analytical, and mass spectral data for CF4 are, without any reservation, nicely in agreement with those reported in the literature.^{2,5,6} The use of commercially available $CaCN_2$ (Alfa) cannot be recommended as the black material contains up to 10% C from the industrial diazotization process (see below, "*Caution*"). This leads to unstoichiometric fluorination reactions and therefore impure CF₄.

Experimental Section

Caution! Fluorine and chlorine trifluoride are powerful oxidizers, are toxic, and can react violently with most organic substances (e.g. graphitefree CaCN₂ has to be used, see above). Suitable shielding is required, and protective clothing and face masks should be worn at all times.

A 120-mL steel reaction vessel (SS-316, deactivated with ClF₃ was loaded with 3.0 g (37.5 mmol) carbon-free $CaCN_2^{2,3}$ and 0.3 g (2.0 mmol) of CsF. [N.b. The reaction should be carried out in well-passivated metal equipment only. Although CIF3 is most convenient, F2 can be used for deactivation.]) F_2 (115 mmol, 4.4 g) was condensed at -196 °C onto the CaCN₂. The reaction mixture was warmed within 1 h to room temperature and held at this temperature for 12 h. After the mixture was cooled to -196 °C (or -183 °C), all volatile components were removed in vacuum and pure CF₄ was isolated after fractional condensation at -160 °C in 89% yield (2.9 g, 33 mmol). IR (gas, 25 °C, 0.14 psi, $\tilde{\nu}$ in cm⁻¹): 2565 m, 2193 s, 1945 m, br, 1540 s, 1283 vvs (v₃), 631 s (v₄); cf. ref 6. Raman (647.09 nm, 50 mW, -110 °C, liquid under pressure, Δv in cm⁻¹, relative intensities in parentheses): 1281 (1), ν_3 ; 908 (10), ν_1 ; 633 (1), ν_4 ; 438 (2) ν_2 ; cf. ref 6. Bp: -130 ± 3 °C (lit.^{1,2} -128.5 °C). Mp: $-185 \pm 5 \text{ °C}$ (lit.^{1,2} -183.5 °C). MS (EI, 70 eV, 25 °C): m/e =88 (M⁺).

Acknowledgment. We are grateful to the Deutsche Forschungsgemeinschaft (Grant KL 636/2-1) and to the Fonds derChemischen Industrie for financial support of this work.

Registry No. CaCN₂, 156-62-7; F₂, 7782-41-4; CF₄, 75-73-0.

(8) Mitsch, R. A. J. Heterocycl. Chem. 1964, 1, 59.

Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements, 1st ed.; Pergamon Press: Oxford, England, 1984, p 322.
Brauer, G. Handbuch der Präparativen Anorganischen Chemie; 3rd

ed.; Ferdinand Enke: Stuttgart, Germany, 1978.

⁽³⁾ Picard, J. P.; Blais, M. U.S. 3,173,755, 1965; Chem. Abstr. 1965, 62, 14219

⁽⁴⁾ As CsF catalyzes the isomerization of FNCNF to give $F_2CN_2^7$ both species are likely to be intermediates in the fluorination pathway of $CaCN_2$. Whereas the first step (formation of FNCNF or F_2CN_2) is a slow reaction, the fluorination of F2CN2 to give CF4 and N2 is apparently a fast reaction. (N.b. Difluorodiazirine, F2CN2, can be decomposed to difluorocarbene and N_2 either by thermal or by ultraviolet irradiation.⁸) If FNCNF is not converted into F2CN2 (by CsF catalysis) the formation of NF_3 as a side product is in agreement with the N-F bonded precursor.

⁽⁵⁾ Clark, R. J. H.; Rippon, D. M. J. Chem. Soc., Chem. Commun. 1971, 1295.

Schrader, B. Raman/Infrared Atlas of Organic Compounds; 2nd ed.; VCH Verlagsgesellschaft: Weinheim, Germany 1989; p A 2-50. (6)

Meyers, M. D.; Frank, S. Inorg. Chem. 1966, 5, 1455.